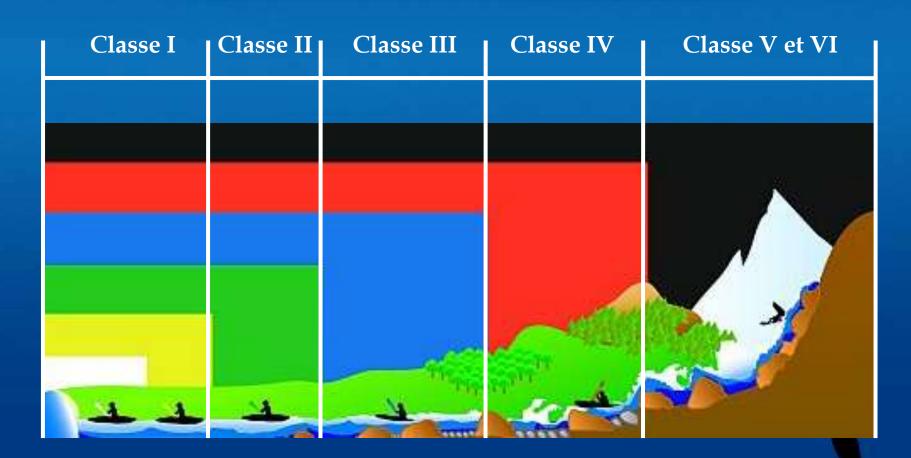
Influence du terrain sur les paramètres physiologiques et temporels d'un sprint en canoë-kayak descente

Descente

Sprint ou Classique

Course contre la montre ≈ 1'30 – 2'

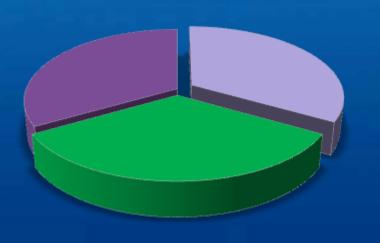
En eaux vives


Différents profils de rivière

OBJECTIF

Conserver la vitesse moyenne la plus élevée tout au long du parcours

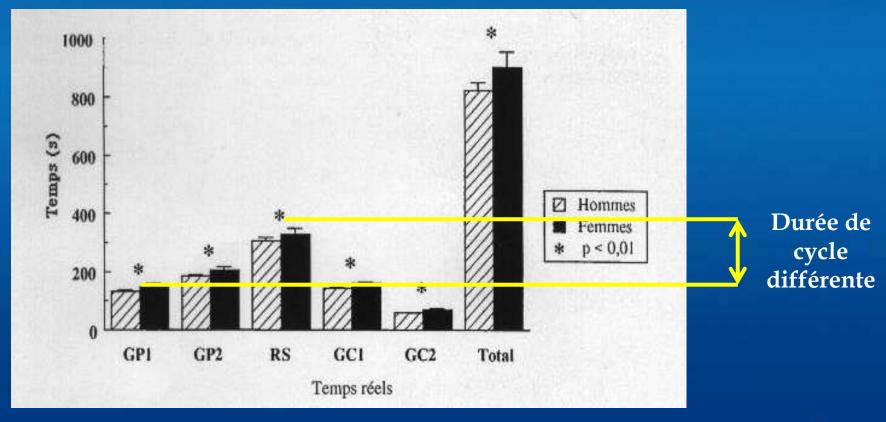
INTRODUCTION


Lieux de pratique

INTRODUCTION

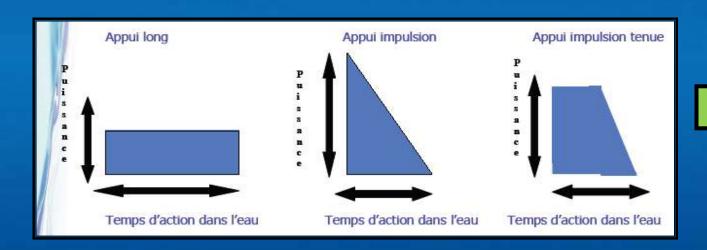
La motricité du kayakiste

3 Tâches à résoudre simultanément en canoë-kayak



- Propulsion
- Equilibration
- Conduite

Répartition des tâches à réaliser en canoë-kayak descente



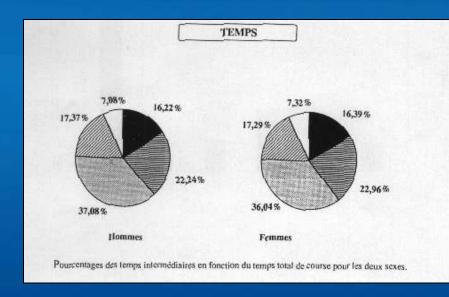
La motricité du kayakiste

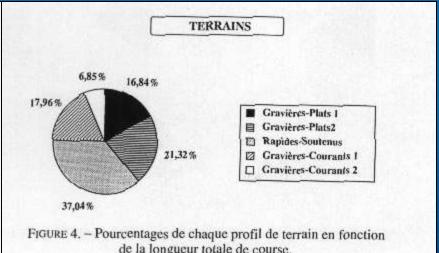
Masset, Rouard & Brossat, 1997

La motricité du kayakiste

Brossat, 2008

Lecture des mouvements d'eau


Placement des appuis sur le relief



En eaux plates : Appui impulsion tenue / Fréquence En eaux vives : Appui long / Amplitude Narduzzi, 2009

Aspects temporels

de la longueur totale de course.

Proportion de temps > Proportion de terrain : 21,32% < 22,96%Tangage + Ecoulement tourbillonnaire + mauvaise qualité de l'appui

Vitesse inférieure dans le courant = pas d'effet de la pesanteur sur la performance en CK

Masset, Rouard & Brossat, 1997

Aspects physiologiques

Estimates of anaerobic and aerobic energy contribution during selected periods of maximal exercise

Duration of exhaustive exercise (sec)	% anaerobic	% aerobic (a)
0-10	94	6
0-15	88	12
0-20	82	18
0-30	73	27
0-45	63	37
0-60	55	45
0-75	49	51
0-90	44	56
0-120	37	63
0-180	27	73
0-240	21	79

(a) Approximately ± 10% at the 95% prediction level

Gastin, 2001

Descente Sprint

Aspects physiologiques

P. Zamparo, C. Capelli, G. Guerrini, 1999

Table 3 Contribution of aerobic $(Aer_{(W)})$, anaerobic latic (AnL) and anaerobic alactic (AnAl) energy sources to the overall metabolic power output $(\dot{E}_{(W)})$ during maximal trials. Data are means (SD). See text for details. $(d \ Distance, \ \nu \ velocity)$

d (m)	(m · s ⁻¹)	$\frac{\dot{E}_{(\mathbf{W})}}{(\mathbf{k}\mathbf{W})}$	Aer _(W) (kW)	AnL (kW)	AnAl (kW)
250 (n = 7)	4.03 (0.31)	1.58 (0.31)	0.64 (0.14)	0.59 (0.14)	0.35 (0.08)
500 (n = 7)	3.71 (0.33)	1.34 (0.26)	0.81 (0.19)	0.36 (0.08)	0.18 (0.04)
(n = 5)	3.46 (0.28)	1.14 (0.35)	0.95 (0.27)	0.10 (0.07)	0.09 (0.02)
$\begin{array}{c} 2000 \\ (n = 6) \end{array}$	3.52 (0.33)	1.14 (0.33)	1.02 (0.31)	0.07 (0.01)	0.05 (0.01)

500m CEL ≈ Sprint

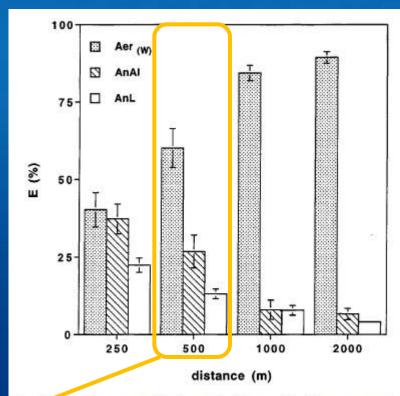


Fig. 3 Percentage contribution of the aerobic ($Aer_{(W)}$ stippled bars), anaerobic lactic (AnL, white bars) and anaerobic alactic (AnAl, hatched bars) energy sources to the overall metabolic power output (E, 100%) in the maximal trials. Data are means \pm 1 SD

Aspects physiologiques

Subjects	Speed (m.s ⁻¹)	C _K (J.kg ⁻¹ .m ⁻¹)	C _K (J.m ⁻¹)	Net blood lactate (mM)	Alactic sources (%)	Lactic sources (%)	Aerobic sources (%)
3,86 ± 0,10	5,09 ± 0,38	397 ± 33	4,1 ± 1,22	10,10	4,41	85,49	
$4,36 \pm 0,14$	6,06 ± 0,43	473 ± 39	7,6 ± 1,38	17,02	26,01	56,97	
, , , , , , , , , , , , , , , , , , , ,	$3,34 \pm 0,06$	4,28 ± 0,41	281 ± 31	1,1 ± 0,70	8,34	1,36	90,30
	$3,55 \pm 0,06$	4,90 ± 0,35	316 ± 27	3,4 ± 1,23	9,85	4,13	86,02
	$3,89 \pm 0,12$	5,71 ± 0,42	376 ± 37	6,2 ± 1,25	16,35	29,43	54,23
C1 (n=5)	$3,31 \pm 0,07$	5,16 ± 0,23	396 ± 25	1,5 ± 1,96	7,89	1,52	90,60
	$3,63 \pm 0,09$	5,75 ± 0,27	442 ± 38	4,7 ± 3,56	9,63	4,72	85,65
	4,00 ± 0,16	6,71 ± 0,44	516 ± 49	7,3 ± 0,48	16,58	25,45	57,97

K1M : Kayakiste masculin / K1F : Kayakiste féminin / C1 : Canoéiste / n : nombre de sujet / Ck : Coût énergétique

Tableau 3 : Coût énergétique global par unité de distance Pour parcourir 1000m rapporté dans les 3 vitesses étudiées

Augmentation de la contribution des sources lactiques avec la vitesse

Buglione & al., 1991

Récapitulatif et hypothèse

En eaux vives:

- Amplitude / appui long
- Vitesses moins élevées
- Taux de lactate plus faibles

En eaux plates:

- Fréquence / appui impulsion tenue
- Vitesses plus élevées
- Taux de lactate plus élevés

HYPOTHESE DE RECHERCHE

Protocole expérimental

- ❖ 5 Athlètes de niveau international
- ❖ Analyse du taux de lactate après un sprint sur le bassin de Cesson-Sévigné (Classe II,III) de 300m
 - ▶ 3 prélèvements
- ❖ Analyse du taux de lactate après un sprint de 300m sur le plat
 - ➤ 3 Prélèvements
- ❖ Mesure de la FC sur les deux courses
- Chronométrage manuel

Mesure de la lactatémie

- Prélèvement d'une goutte de sang au doigt
- Mélange dans un tube prêt à l'usage
- Mise en place dans le photomètre
- Mesure en quelques secondes
- Possibilité de faire des mesures en série

Méthode du Dr Lange

MATERIEL

Mesure de la fréquence cardiaque

- Application des électrodes sur le sternum avant chaque sprint
- Enregistrement de la fréquence cardiaque instantanée
- Transfert des données sur ordinateur

MATERIEL

Lactatémie

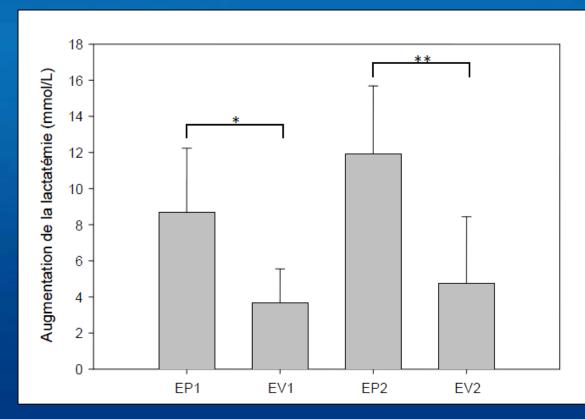


Figure 5 : Comparaison de l'augmentation de la lactatémie durant 1 (EP1 et EV1) et 2 sprints (EP2 et EV2)

Sollicitation de la filière lactique plus importante en eaux plates Validation de l'hypothèse

Vitesses moyennes

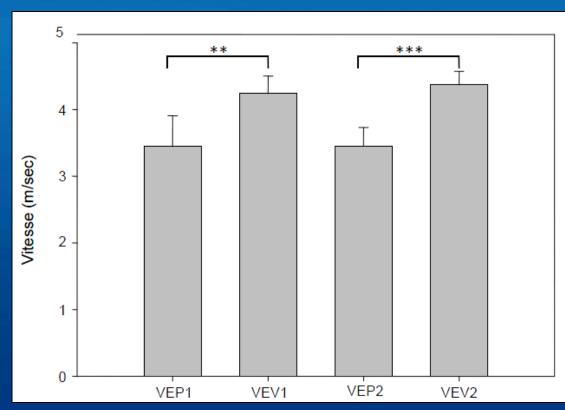


Figure 7: Vitesses moyennes sur un sprint de 300m en eaux plates (VEP1 et VEP2) et en eaux vives (VEV1 et VEV2)

Vitesses moyennes plus élevée en eaux vives Invalidation de l'hypothèse

Fréquences cardiaques

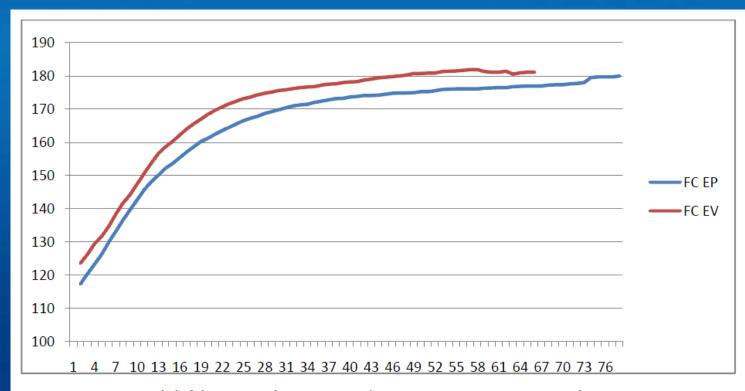


Figure 7 : Comparaison de la fréquence cardiaque au court du temps en eaux vives et en eaux plates

Pas de différence significative

Taux de lactate plus faible en eaux vives / Vitesses plus élevées

Augmentation de la vitesse

Classe II : peu de tangage, appui faible, écoulement tourbillonnaire Manque de précision : Rapide soutenu ?

Pesanteur = Effet positif sur la performance en CK en classe II

Comparer avec Classes III, IV, V

Biopsies / Echanges gazeux

